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ABSTRACT 
 

The tensor product of zero-divisor graphs of variation monogenic semigroups Γ(𝑉𝑆𝑀𝑛1 ) and Γ(𝑉𝑆𝑀𝑚2 ) is studied. The vertices(𝑥1𝑖 , 𝑥2
𝑗
) and (𝑥1𝑘 , 𝑥2

𝑓
) 

of the tensor product of this graph are adjacent whenever 𝑔𝑐𝑑(𝑖, 𝑘) = 1, 𝑖 + 𝑘 > 𝑛, 𝑔𝑐𝑑(𝑗, 𝑓) = 1 , 𝑗 + 𝑓 > 𝑚. Some properties of tensor product 
graphs are obtained, such as girth, diameter, chromatic, clique and domination numbers.  

KEYWORDS 

Variation monogenic semigroup, relatively prime, tensor product, adjacency 
CITATION 

Akwu, A.D. and Al Subaiei, B. (2021). The tensor product of zero-divisor graphs of variation monogenic semigroups. The Scientific Journal of King Faisal University: Basic and 
Applied Sciences, 22(2), 61–4. DOI: 10.37575/b/sci/210038 

 

1. Introduction 

The zero-divisor graphs on semigroups were widely investigated in 
many studies; for example, DeMeyer et al. (2002), DeMeyer et al. 
(2005), Wright (2007) and Anderson and Badawi (2017).  
Das et al. (2013) studied zero-divisor graphs of the monogenic 
semigroup Γ(𝑆𝑀), which is defined as 𝑥𝑖 . 𝑥𝑗 = 𝑥𝑖+𝑗 = 0 if and only 
if 𝑖 + 𝑗 > 𝑛. Then, Al Subaiei and Akwu (2020) modified the graph in 
the work of Das et al. (2013) by adding one more condition, 
𝑔𝑐𝑑(𝑖, 𝑗) = 1 , and named the graph the variation monogenic 
semigroup Γ(𝑉𝑆𝑀). These two graphs have different properties. For 
example, when 𝑛 = 8 , the graph of Das et al. (2013) has 
𝑑𝑖𝑎𝑚(Γ(𝑆𝑀8)) = 2 , 𝒳(Γ(𝑆𝑀8) = 5 , 𝛾(Γ(𝑆𝑀8)) = 1 , and 
𝜔(Γ(𝑆𝑀8)) = 5 . Meanwhile, the graph of Al Subaiei and Akwu 
(2020) has 𝑑𝑖𝑎𝑚(Γ(𝑉𝑆𝑀8)) = 3 , 𝒳(Γ(𝑉𝑆𝑀8) = 3 , 
𝛾(Γ(𝑉𝑆𝑀8)) = 2 , and 𝜔(Γ(𝑉𝑆𝑀8)) = 3 . Also, when 𝑛  is prime, 
the two graphs have different properties. For example, when 𝑛 = 7, 
the graph of Das et al. (2013) has 𝒳(Γ(𝑆𝑀7) = 4, 𝛾(Γ(𝑆𝑀7)) = 1, 
and 𝜔(Γ(𝑆𝑀7)) = 4, while the graph of Al Subaiei and Akwu (2020) 
has 𝒳(Γ(𝑉𝑆𝑀7) = 3 , 𝛾(Γ(𝑉𝑆𝑀7)) = 1 , and 𝜔(Γ(𝑉𝑆𝑀7)) = 3 . 
These differences led us to further investigate the results of the 
properties of the variation monogenic semigroup graph, such as the 
tensor product.  
The concept of the tensor product on graphs has been studied well 
and a sufficient amount of rich material can be found in the literature. 
Some examples are Harary and Trauth, Jr. (1966), Sampathkumar 
(1972) and Asmerom (1998). The tensor product of zero-divisor 
graphs of monogenic semigroups was investigated by Akgunes et al. 
(2014). This work will extend the investigation of the monogenic 
semigroup graph of Akgunes et al. (2014) to the variation monogenic 
semigroup graph and hence will use the same notation.  
A set with an associative binary operation is called a semigroup. The 
semigroup that is generated by one element is called a monogenic 
semigroup. A monogenic semigroup with zero is denoted by 𝑆𝑀𝑛 
where 𝑛 is the order of the semigroup. The nonzero elements of 𝑆𝑀𝑛 
are referred to as the vertices of the graph Γ(𝑆𝑀𝑛). In Al Subaiei and 
Akwu’s work (2020), the undirected graph of the variation 
monogenic semigroup with order 𝑛 denoted by Γ(𝑉𝑆𝑀𝑛) was given, 
and the two vertices 𝑥𝑖  and 𝑥𝑗  are adjacent if and only if the 

following conditions are satisfied:  
𝑥𝑖 . 𝑥𝑗 = 𝑥𝑖+𝑗 = 0 if and only if 𝑖 + 𝑗 > 𝑛 and 𝑔𝑐𝑑(𝑖, 𝑗) = 1(∗) 
where 𝑥𝑖  and 𝑥𝑗  ∈ 𝑉(𝛤(𝑉𝑆𝑀𝑛)) and 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 
For basic general information about graph theory properties, we refer 
the reader to Bondy and Murty (1976). In general, for any graph 𝐺, 
𝑉(𝐺) is known as the set of vertices in 𝐺. If the two vertices 𝑥, 𝑦 are 
adjacent, then 𝑥𝑦 ∈ 𝐸(𝐺). The distance (shortest path) between two 
vertices is denoted by 𝑑𝛤(𝐺). The diameter, denoted by 𝑑𝑖𝑎𝑚(𝛤(𝐺)) 
is defined as 𝑑𝑖𝑎𝑚(𝛤(𝐺)) = 𝑚𝑎𝑥{𝑑𝛤(𝐺)(𝑥, 𝑦): 𝑥, 𝑦 ∈
𝑉(𝛤(𝐺))}. The length of the shortest cycle in the graph is known as 
the girth. The degree of the vertex 𝑥𝑖 , denoted by 𝑑𝑒𝑔𝛤(𝐺)(𝑥𝑖), is the 
number of vertices that are adjacent to 𝑥𝑖 . The maximum degree of 
𝛤(𝐺) is denoted by 𝛥(𝛤(𝐺)), while the minimum degree of 𝛤(𝐺) is 
denoted by 𝛿(𝛤(𝐺)), which means the number of the largest and 
smallest vertex’s degrees, respectively. The subset 𝐷  of 𝑉(𝐺)  is a 
dominating set of 𝐺 if each vertex of 𝑉(𝐺)\𝐷 is adjacent to at least 
one vertex of 𝐷 . The domination number, 𝛾(𝐺), is the dominating 
set with minimum cardinality. The clique number, 𝜔(𝐺) , is the 
maximum number of vertices in any clique where the clique is a 
complete subgraph of graph 𝐺. The chromatic number of 𝐺 , 𝒳 is the 
minimum number of colors assigned to the vertices of 𝐺 such that no 
two adjacent vertices have the same color. When 𝜔(𝐺) = 𝒳(𝐺), the 
graph 𝐺 is a perfect graph, according to Lovasz (1972). For a graph 𝐺 
with order 𝑛, a coprime labeling of 𝐺 is a labeling of its vertices with 
distinct integers {1,2, . . . , 𝑛} such that the labels on any two adjacent 
vertices are relatively prime. A coprime graph is a graph that has 
coprime labeling. 
Consider the simple graphs 𝐺1  and 𝐺2 . It is known that the tensor 
product 𝐺1⊗𝐺2 has the vertex set 𝑉(𝐺1) × 𝑉(𝐺2), where any two 
vertices, (𝑔1, 𝑔2)  and (ℎ1, ℎ2) , are adjacent if and only if 𝑔1ℎ1 ∈
𝐸(𝐺1) and 𝑔2ℎ2 ∈ 𝐸(𝐺2). 
In our work, we will consider the graphs of the variation monogenic 
semigroup Γ(𝑉𝑆𝑀𝑛1 ) and Γ(𝑉𝑆𝑀𝑚2 ) and study the tensor product of 
these graphs. It is known in the theory of graphs that when any two 
vertices, (𝑥1𝑖 , 𝑥2

𝑗
)  and (𝑥1𝑘 , 𝑥2

𝑓
)  are adjacent, it means that 

(𝑥1
𝑖 , 𝑥2

𝑗
)(𝑥1

𝑘 , 𝑥2
𝑓
) ∈ 𝐸(Γ(𝑉𝑆𝑀𝑛

1 ) ⊗ Γ(𝑉𝑆𝑀𝑚
2 )) . In this work, two 

adjacent vertices, (𝑥1𝑖 , 𝑥2
𝑗
)  and (𝑥1𝑘 , 𝑥2

𝑓
) , will be written as 

(𝑥1
𝑖 , 𝑥2

𝑗
) − (𝑥1

𝑘 , 𝑥2
𝑓
). Since the graphs Γ(𝑉𝑆𝑀𝑛1 ) and Γ(𝑉𝑆𝑀𝑚2 ) are 
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simple, then (𝑥1𝑖 , 𝑥2
𝑗
) is not adjacent to (𝑥1𝑘 , 𝑥2

𝑓
) whenever 𝑖 = 𝑘 or 

𝑗 = 𝑓 . Therefore, (𝑥1𝑖 , 𝑥2
𝑗
) − (𝑥1

𝑘 , 𝑥2
𝑓
)  whenever 𝑥1𝑖 − 𝑥1𝑘  and 

𝑥2
𝑗
− 𝑥2

𝑓 . That is:     

𝑥1
𝑖𝑥1
𝑘 ∈ 𝐸(Γ(𝑉𝑆𝑀𝑛

1 )) & 𝑥2
𝑗
𝑥2
𝑓
∈ 𝐸(Γ(𝑉𝑆𝑀𝑚

2 )) 
⇕ 

𝑔𝑐𝑑(𝑖, 𝑘) = 1, 𝑖 + 𝑘 > 𝑛, 𝑔𝑐𝑑(𝑗, 𝑓) = 1 , 𝑗 + 𝑓 > 𝑚 

2. Results 

In this section, we give some tensor product characteristics of the 
variation monogenic semigroup graphs Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 ). The 
condition of the greatest common divisor on the graph of the 
variation monogenic semigroup makes the structure of the proofs in 
this work depend on the highest prime numbers 𝑝1 and 𝑝2 being less 
than or equal to 𝑛 or 𝑚, respectively. 
The following results give the maximum degree and minimum degree 
of the tensor product graph Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 ). 
2.1. Theorem: Let 𝑝1  and 𝑝2  be the highest prime numbers less or 
equal to 𝑛 and 𝑚, respectively. Then, the maximum and minimum 
degrees of 𝛤(𝑉𝑆𝑀𝑛

1 ) ⊗ 𝛤(𝑉𝑆𝑀𝑚
2 )  are 𝛥((𝛤(𝑉𝑆𝑀𝑛

1 ) ⊗
𝛤(𝑉𝑆𝑀𝑚

2 ))) = (𝑝1 − 1)(𝑝2 − 1)  and 𝛿((𝛤(𝑉𝑆𝑀𝑛
1 ) ⊗

𝛤(𝑉𝑆𝑀𝑚
2 ))) = 1 respectively. 

Proof. When 𝑝1 = 𝑛  and 𝑝2 = 𝑚 , then 𝑔𝑐𝑑(𝑝1, 𝑗) = 1  and 
𝑔𝑐𝑑(𝑝1, 𝑘) = 1  where 1 ≤ 𝑗 < 𝑛  and 1 ≤ 𝑘 < 𝑚 . Hence, the 
result follows from Akgunes et al. (2014). Otherwise, we assume that 
𝑝1 ≠ 𝑛 , and 𝑝2 ≠ 𝑚 , then vertex (𝑥1

𝑝1 , 𝑥2
𝑝2)  has the maximum 

degree. Therefore, (𝑥1
𝑝1
, 𝑥2
𝑝2) − (𝑥1

𝑑 , 𝑥2
𝑠)  when 𝑝1 + 𝑑 > 𝑛 , 

𝑔𝑐𝑑(𝑝1, 𝑑) = 1 , 𝑝2 + 𝑠 > 𝑚  and 𝑔𝑐𝑑(𝑝2, 𝑠) = 1 . Hence, 𝑑 >
𝑛 − 𝑝1  and 𝑠 > 𝑚 − 𝑝2 . Since the graph is a simple graph, 
(𝑥1

𝑝1 , 𝑥2
𝑝2)  is not adjacent to itself. Therefore, 𝑑𝑒𝑔((𝑥1

𝑝1 , 𝑥2
𝑝2)) =

|𝑑||𝑠| , where |𝑑| = (𝑛 − (𝑛 − 𝑝1)) − 1 = 𝑝1 − 1  and |𝑠|=
(𝑚 − (𝑚 − 𝑝2)) − 1 = 𝑝2 − 1 . Thus, the maximum degree is 
(𝑝1 − 1)(𝑝2 − 1). 
Since 1 is relatively prime with any number and 𝑛 + 1 > 𝑛 and 𝑚+
1 >  𝑚 , the vertex (𝑥1, 𝑥2)  is adjacent only to (𝑥1𝑛, 𝑥2𝑚) . So, the 
minimum degree is 1.  
The following two results are on the diameter and girth of the tensor 
product graph Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 ) . The diameter of the tensor 
product graphs of the monogenic semigroup Γ(𝑆𝑀𝑛1 ) ⊗ Γ(𝑆𝑀𝑚

2 ), as 
shown in Akgunes et al. (2014), is 4 when 𝑛 ≥ 𝑚 > 3, and the girth 
is 3 when 𝑛 ≥ 𝑚 > 3. However, in the case of the tensor product 
graphs of the variation monogenic semigroup, the diameter is 4 
when 𝑛 ≥ 𝑚 > 6 , and the girth is 3 when 𝑛,𝑚 > 4 as shown 
below. 
2.2. Theorem: Let 𝑛 ≥ 𝑚  be positive integers. For any variation  
monogenic semigroup graphs 𝛤(𝑉𝑆𝑀𝑛

1 ) and 𝛤(𝑉𝑆𝑀𝑚2 ) with order 𝑛 
and 𝑚, respectively, 𝑑𝑖𝑎𝑚(Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 )) = 

{
 
 

 
 
4,  𝑖𝑓 𝑚 > 6

 
5,  𝑖𝑓 𝑚 ≤ 6, 𝑛 > 4 𝑎𝑛𝑑 (𝑛,𝑚) ≠ (6,𝑚), 𝑤ℎ𝑒𝑟𝑒 𝑔𝑐𝑑(6,𝑚) ≠ 1

 
7,  𝑖𝑓 (𝑛,𝑚) = (6,2), (6,3), (6,4)

 

Proof. We split the problem into the following cases: 
 Case 1: If 𝑚 > 6 , the diameter can be considered as the distance 
between (𝑥1, 𝑥2) and (𝑥1, 𝑥22) whenever 𝑛 is a positive integer and 
𝑚 is even, which is given below:  
 (𝑥1, 𝑥2) − (𝑥1

𝑛, 𝑥2
𝑚) − (𝑥1

𝑝
, 𝑥2
𝑝
) − (𝑥1

𝑛 , 𝑥2
𝑚−1) − (𝑥1, 𝑥2

2) 
where 𝑝 is a prime number less than 𝑛 and 𝑚 in the first and second 
coordinate, respectively. Also, fr 𝑛 a positive integer and 𝑚 odd, the 
diameter can be viewed as the distance between (𝑥1, 𝑥2)  and 

(𝑥1
𝑛, 𝑥2) given as follows:  

 (𝑥1, 𝑥2) − (𝑥1
𝑛, 𝑥2

𝑚) − (𝑥1
𝑝
, 𝑥2
𝑝
) − (𝑥1

𝑛−1, 𝑥2
𝑚) − (𝑥1

𝑛, 𝑥2) 
Hence, the diameter is 4.  
 Case 2: If 𝑚 ≤ 6, 𝑛 > 4 and (𝑛,𝑚) ≠ (6,3), (6,4). The diameter 
of the graph can be viewed as the distance between (𝑥1, 𝑥2)  and 
(𝑥1, 𝑥2

𝑚) whenever 𝑚 is even and is given below:  

(𝑥1, 𝑥2) − (𝑥1
𝑛, 𝑥2

𝑚) − (𝑥1
𝑝
, 𝑥2
𝑝
) − (𝑥1

𝑝−2
, 𝑥2
𝑚) − (𝑥1

𝑛 , 𝑥2)
− (𝑥1, 𝑥2

𝑚) 
Also, whenever 𝑚 is odd, the diameter can be viewed as the distance 
between (𝑥1, 𝑥2) and (𝑥1, 𝑥2

𝑚), given as:  
(𝑥1, 𝑥2) − (𝑥1

𝑛, 𝑥2
𝑚) − (𝑥1

𝑝
, 𝑥2
𝑝
) − (𝑥1

𝑛−1, 𝑥2
𝑚) − (𝑥1

𝑛, 𝑥2)
− (𝑥1, 𝑥2

𝑚) 
Hence, the diameter is 5. 
 Case 3: Whenever (𝑛,𝑚) = (6,2), the diameter can be viewed as 
the distance between (𝑥1, 𝑥2) and (𝑥1, 𝑥22), given as: 
(𝑥1, 𝑥2) − (𝑥1

6, 𝑥2
2) − (𝑥1

5, 𝑥2
1) − (𝑥1

3, 𝑥2
2) − (𝑥1

4, 𝑥2
1) − (𝑥1

5, 𝑥2
2)

− (𝑥1
6, 𝑥2

1) − (𝑥1
1, 𝑥2

2). 
Whenever (𝑛,𝑚) = (6,3) , the diameter can be viewed as the 
distance between (𝑥1, 𝑥2) and (𝑥1, 𝑥23), given as: 

(𝑥1, 𝑥2) − (𝑥1
6, 𝑥2

3) − (𝑥1
5, 𝑥2

2) − (𝑥1
2, 𝑥2

3) − (𝑥1
4, 𝑥2

2)
− (𝑥1

6, 𝑥2
3) − (𝑥1

6, 𝑥2
1) − (𝑥1

1, 𝑥2
3). 

Whenever (𝑛,𝑚) = (6,4) , the diameter can be viewed as the 
distance between (𝑥1, 𝑥2) and (𝑥1, 𝑥2

2), given as: 
(𝑥1, 𝑥2) − (𝑥1

6, 𝑥2
4) − (𝑥1

5, 𝑥2
3) − (𝑥1

3, 𝑥2
2) − (𝑥1

4, 𝑥2
3)

− (𝑥1
5, 𝑥2

2) − (𝑥1
6, 𝑥2

3) − (𝑥1
1, 𝑥2

2) 
Hence, the diameter is 7. 
2.3. Remark: Whenever (𝑛,𝑚) = (6,6), the diameter is 6 , which 
can be viewed as the distance between (𝑥1, 𝑥2) and (𝑥1, 𝑥22), given 
as: 
(𝑥1, 𝑥2) − (𝑥1

6, 𝑥2
6) − (𝑥1

1, 𝑥2
5) − (𝑥1

6, 𝑥2
4) − (𝑥1

1, 𝑥2
3) − (𝑥1

6, 𝑥2
5)

− (𝑥1
6, 𝑥2

2). 
2.4. Theorem: For any variation monogenic semigroup graphs 
𝛤(𝑉𝑆𝑀𝑛

1 )  and 𝛤(𝑉𝑆𝑀𝑚
2 ) , the girth of the graph 𝛤(𝑉𝑆𝑀𝑛

1 ) ⊗
𝛤(𝑉𝑆𝑀𝑚

2 ) is 

=

{
 
 
 

 
 
 
3,  𝑖𝑓 𝑛,𝑚 > 4

 
4,  𝑖𝑓 𝑛 > 4, 𝑎𝑛𝑑 1 < 𝑚 ≤ 4

 
4,  𝑖𝑓 1 < 𝑛 ≤ 4, 𝑎𝑛𝑑 𝑚 > 4

 
𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡𝑠  𝑖𝑓 𝑛 ≤ 4 𝑎𝑛𝑑 𝑚 ≤ 4

 

Proof. Let 𝑝1 and 𝑝2 be the highest prime numbers less or equal to 𝑛 
and 𝑚 , respectively. By definition of Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 ) , for 
𝑛,𝑚 > 4 we have: 

(𝑥1
𝑝1 , 𝑥2

𝑝2) − (𝑥1
𝑝1−1, 𝑥2

𝑝2−1) − (𝑥1
𝑝1−2, 𝑥2

𝑝2−2) − (𝑥1
𝑝1 , 𝑥2

𝑝2) 
Since when 𝑛,𝑚 > 4  we have 𝑔𝑐𝑑(𝑝i, 𝑝i − 1) = 1 , 𝑝i + 𝑝i −
1 >  𝑛,𝑚 , 𝑔𝑐𝑑(𝑝i − 1, 𝑝i − 2) = 1 , 𝑝i − 1 + 𝑝i − 2 >  𝑛,𝑚 , 

𝑔𝑐𝑑(𝑝i, 𝑝i − 2) = 1, and 𝑝i + 𝑝i − 2 >  𝑛,𝑚. So, 𝑥𝑖
𝑝i− 𝑥𝑖

𝑝i−1, 
𝑥𝑖
𝑝i−1 − 𝑥𝑖

𝑝i−2, and 𝑥𝑖
𝑝i− 𝑥𝑖

𝑝i−2, where 𝑖 = 1 or 2. 

For 𝑛 > 4 and 1 < 𝑚 ≤ 4, we have that, if 𝑚 = 4 or 3: 

(𝑥1
𝑝1 , 𝑥2

3) − (𝑥1
𝑝1−1, 𝑥2

2) − (𝑥1
𝑝1−2, 𝑥2

3) − (𝑥1
𝑝1−1, 𝑥2

2)
− (𝑥1

𝑝1 , 𝑥2
3) 

while if 𝑚 = 2: 

(𝑥1
𝑝1 , 𝑥2

2) − (𝑥1
𝑝1−1, 𝑥2

1) − (𝑥1
𝑝1−2, 𝑥2

2) − (𝑥1
𝑝1−1, 𝑥2

1)
− (𝑥1

𝑝1 , 𝑥2
2) 

For 1 < 𝑛 ≤ 4 and 𝑚 > 4, by using a similar argument as above, 
the result follows (exchange 𝑚 with 𝑛 in the above case). 

For 𝑛,𝑚 ≤ 4, it is clear that 𝑥𝑖
𝑝−1

𝑥𝑖
𝑝−2

≠ 0 since 2𝑝 − 3 ≯ 𝑛,𝑚. 
Therefore, (𝑥1

𝑝1−1, 𝑥2
𝑝2−1) is not adjacent to (𝑥1

𝑝1−2, 𝑥2
𝑝2−2), which 

implies that there is no cycle connecting (𝑥1
𝑝1 , 𝑥2

𝑝2)  for 𝑛,𝑚 ≤ 4 . 
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Hence, the girth does not exist in this case. 
For 𝑛 = 1, it is clear from the definition of the tensor product that 
there is no vertex adjacent to the vertex (𝑥1, 𝑥2𝑘). Hence, the result 
follows. 
2.5. Example: Consider the graph 𝛤(𝑉𝑆𝑀5) ⊗ 𝛤(𝑉𝑆𝑀10) . Then, 
from the above results, 𝛥(𝛤(𝑉𝑆𝑀5) ⊗ 𝛤(𝑉𝑆𝑀10)) = 24 , 
𝛿(𝛤(𝑉𝑆𝑀5) ⊗ 𝛤(𝑉𝑆𝑀10)) = 1 , 𝑑𝑖𝑎𝑚(𝛤(𝑉𝑆𝑀5) ⊗
𝛤(𝑉𝑆𝑀10)) = 4, and 𝑔𝑖𝑟𝑡ℎ(𝛤(𝑉𝑆𝑀5) ⊗ 𝛤(𝑉𝑆𝑀10)) = 3. While, 
the graph 𝛤(𝑉𝑆𝑀7) ⊗ 𝛤(𝑉𝑆𝑀4)  has 𝛥(𝛤(𝑉𝑆𝑀7) ⊗
𝛤(𝑉𝑆𝑀4)) = 12 , 𝛿(𝛤(𝑉𝑆𝑀7) ⊗ 𝛤(𝑉𝑆𝑀4)) = 1 , 
𝑑𝑖𝑎𝑚(𝛤(𝑉𝑆𝑀7)  ⊗  𝛤(𝑉𝑆𝑀4)) = 5 , and 𝑔𝑖𝑟𝑡ℎ(𝛤(𝑉𝑆𝑀7) ⊗
𝛤(𝑉𝑆𝑀4)) = 4.  
The following definition apeared in Al Subaiei and Akwu (2020). 
2.6. Definition: For a postive integer 𝑛 , the set 𝜋(𝑛) =
{𝑝1, 𝑝2, … , 𝑝𝑘} is the set of consecutive prime numbers less or equal 
to 𝑛 such that 𝑝𝑡 + 𝑝𝑡+1 > 𝑛 and 𝜋∗(𝑛) = |𝜋(𝑛)|. Also, for positive 
integers 𝑠𝑓∗ where ⌈𝑛

2
⌉ < 𝑠𝑓

∗ ≤ 𝑛 and the following is satisfied:  
1. 𝑠𝑓

∗ ∉ 𝜋(𝑛)  
2. 𝑔𝑐𝑑(𝑠𝑓

∗, 𝑝𝑓) = 1 for all 𝑝𝑓 ∈ 𝜋(𝑛)  
3. 𝑔𝑐𝑑(𝑠𝑓

∗, 𝑠𝑙
∗) = 1 for any pair ⌈

𝑛

2
⌉ < 𝑠𝑓

∗, 𝑠𝑙
∗ ≤ 𝑛  

the numbers of 𝑠𝑓
∗ are denoted by 𝑆∗ = |𝑠𝑓

∗|. 
For simplicity, suppose that the graph Γ(𝑉𝑆𝑀𝑛1 ) has 𝜋∗(𝑛) and 𝑆1∗ , 
while the graph Γ(𝑉𝑆𝑀𝑚2 ) has 𝜋∗(𝑚) and 𝑆2∗. It is also known from 
Al Subaiei and Akwu (2020) that 𝒳(Γ(𝑉𝑆𝑀𝑛 )) = 𝜔(Γ(𝑉𝑆𝑀𝑛

 )) =
𝜋∗(𝑛) + 𝑆1

∗ . By using these facts, we establish the following 
theorems on the chromatic number, clique number and domination 
number of Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 ). 
2.7. Theorem: For any variation monogenic semigroup graphs 
𝛤(𝑉𝑆𝑀𝑛

1 )  and 𝛤(𝑉𝑆𝑀𝑚2 ) , the chromatic number of 𝛤(𝑉𝑆𝑀𝑛
1 ) ⊗

𝛤(𝑉𝑆𝑀𝑚
2 ) is given as: 

𝒳(Γ(𝑉𝑆𝑀𝑛
1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 )) = {

𝜋∗(𝑛) + 𝑆1
∗,  𝑖𝑓 𝑛 ≤ 𝑚

 
𝜋∗(𝑚) + 𝑆2

∗,  𝑖𝑓 𝑚 < 𝑛
 

 
Proof. Suppose that 𝑛 < 𝑚. From the definition of 𝜋(𝑛) and 𝜋(𝑚), 
we know that (𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙) − (𝑥1

𝑝𝑡𝑥𝑝ℎ)  for any 𝑝𝑓, 𝑝𝑡 ∈ 𝜋(𝑛)  and 
𝑝𝑙 , 𝑝ℎ ∈ 𝜋(𝑚) . Also, we know from the definition of the tensor 
product that (𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙)  is neither adjacent to (𝑥1

𝑝𝑡 , 𝑥2
𝑝𝑙)  nor 

(𝑥1
𝑝𝑓 , 𝑥𝑝ℎ). Since 𝑛 < 𝑚, 𝜋∗(𝑛) ≤ 𝜋∗(𝑚). Then, we can assign all 

vertices that have the same first coordinator to the same color. For 
example, all 𝑝𝑙 ∈ 𝜋(𝑚) , (𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙)  will be in the same color. 

Therefore, we need 𝜋∗(𝑛) distinct colors. 

Consider the vertex (𝑥1
𝑝𝑓 , 𝑥2

𝑝𝑙)  where 𝑝𝑓 ∈ 𝜋(𝑛)  and 𝑝𝑙 ∈ 𝜋(𝑚) . 
Then, for any prime numbers 𝑟, 𝑧 that satisfy 𝑟 ∉ 𝜋(𝑛) or 𝑧 ∉ 𝜋(𝑚), 
it is clear that the vertices (𝑥1𝑟 , 𝑥2

𝑗
)  and (𝑥1𝑖 , 𝑥2𝑧)  where 1 ≤ 𝑖 ≤ 𝑛 

and 1 ≤ 𝑗 ≤ 𝑚 can be assigned the same color as (𝑥1
𝑝𝑓 , 𝑥2

𝑝𝑙). If color 
𝐶1  is assigned to vertex (𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙)  where 𝑝𝑓 ∈ 𝜋(𝑛)  and 𝑝𝑙 ∈

𝜋(𝑚) , then it is obvious that 𝑥1𝑟𝑥1
𝑝𝑓 ∉ 𝐸(Γ(𝑉𝑆𝑀𝑛

1 ))  and 𝑥2𝑧𝑥2
𝑝𝑙 ∉

𝐸(Γ(𝑉𝑆𝑀𝑛
2 )). This implies that color 𝐶1 can be assigned to all vertices 

(𝑥1
𝑟 , 𝑥2

𝑗
) and (𝑥1𝑖 , 𝑥2𝑧) where 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. 

Now, consider the set of vertices (𝑥1
𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

), (𝑥1
𝑠1𝑒
∗

, 𝑥2
𝑠2𝑞
∗

) such that 
𝑠1𝑓
∗ , 𝑠1𝑒

∗ ∉ 𝜋(𝑛) , 𝑠2𝑙
∗ , 𝑠2𝑞

∗ ∉ 𝜋(𝑚) , ⌈
𝑛

2
⌉ < 𝑠1𝑓

∗ , 𝑠1𝑒
∗ ≤ 𝑛 , and ⌈

𝑚

2
⌉ <

𝑠2𝑙
∗ , 𝑠2𝑞

∗ ≤ 𝑚 . From the definition of 𝑠1𝑓
∗  and 𝑠2𝑙

∗ , we have 
(𝑥1

𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

) − (𝑥1
𝑠1𝑒
∗

, 𝑥2
𝑠2𝑞
∗

)  and (𝑥1
𝑝𝑓 , 𝑥2

𝑝𝑙) − (𝑥1
𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

) . 
Moreover, we know from the definition of the tensor product that 
(𝑥1

𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

)  is neither adjacent with (𝑥1
𝑠1𝑓
∗

, 𝑥2
𝑠2𝑞
∗

)  nor (𝑥1
𝑠1𝑒
∗

, 𝑥2
𝑠2𝑙
∗

) . 
Since 𝑛 < 𝑚 , 𝑆1∗ ≤ 𝑆2∗ . Therefore, 𝑆1∗  needs more colors for the 
vertices (𝑥1

𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

). The leftover vertices (𝑥1
𝑔
, 𝑥2
ℎ), where 1 < 𝑔 ≤

𝑛 and 1 < ℎ ≤ 𝑚, can be assigned to one of the colors assigned to 

vertices (𝑥1
𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

)  if 𝑔𝑐𝑑(𝑔, 𝑠1𝑓
∗ ) ≠ 1  and 𝑔𝑐𝑑(ℎ, 𝑠2𝑙

∗ ) ≠ 1 . The 
vertex (𝑥1, 𝑥2) can be assigned to any color that has not been assigned 
to (𝑥1𝑛, 𝑥2𝑚). Therefore, there are 𝜋∗(𝑛) + 𝑆1∗ colors needed to color 
the graph Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 ) . If 𝑚 < 𝑛 , by using a similar 
argument, we can show that there are 𝜋∗(𝑚) + 𝑆2∗ colors needed to 
color the graph Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 ).  
2.8. Theorem: For any variation monogenic semigroup graphs 
𝛤(𝑉𝑆𝑀𝑛

1 )  and 𝛤(𝑉𝑆𝑀𝑚2 ) , the clique number of 𝛤(𝑉𝑆𝑀𝑛
1 ) ⊗

𝛤(𝑉𝑆𝑀𝑚
2 ) is given as: 

𝜔(Γ(𝑉𝑆𝑀𝑛
1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 )) = {

𝜋∗(𝑛) + 𝑆1
∗,  𝑖𝑓 𝑛 ≤ 𝑚

 
𝜋∗(𝑚) + 𝑆2

∗,  𝑖𝑓 𝑚 < 𝑛
 

Proof. Suppose that 𝑛 < 𝑚. From the definition of 𝜋(𝑛) and 𝜋(𝑚), 
we know that (𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙) − (𝑥1

𝑝𝑡𝑥𝑝ℎ)  for any 𝑝𝑓, 𝑝𝑡 ∈ 𝜋(𝑛)  and 
𝑝𝑙 , 𝑝ℎ ∈ 𝜋(𝑚) . Also, we know from the definition of the tensor 
product that (𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙)  is neither adjacent to (𝑥1

𝑝𝑡 , 𝑥2
𝑝𝑙)  nor 

(𝑥1
𝑝𝑓 , 𝑥𝑝ℎ) . As 𝜋∗(𝑛) ≤ 𝜋∗(𝑚)  shows, there are 𝜋∗(𝑛)  different 

vertices that are adjacent to each other. Next, consider the set of vertices 
(𝑥1

𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

), (𝑥1
𝑠1𝑒
∗

, 𝑥2
𝑠2𝑞
∗

)  such that 𝑠1𝑓
∗ , 𝑠1𝑒

∗ ∉ 𝜋(𝑛) , 𝑠2𝑙
∗ , 𝑠2𝑞

∗ ∉
𝜋(𝑚) , ⌈𝑛

2
⌉ < 𝑠1𝑓

∗ , 𝑠1𝑒
∗ ≤ 𝑛 , and ⌈𝑚

2
⌉ < 𝑠2𝑙

∗ , 𝑠2𝑞
∗ ≤ 𝑚 . From the 

definition of 𝑆1∗ and 𝑆2∗, we know that (𝑥1
𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

) − (𝑥1
𝑠1𝑒
∗

, 𝑥2
𝑠2𝑞
∗

) and 
(𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙) − (𝑥1

𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

)  where 𝑝𝑓 ∈ 𝜋(𝑛)  and 𝑝𝑙 ∈ 𝜋(𝑚) . Since 
𝑆1
∗ ≤ 𝑆2

∗, there are more 𝑆1∗ vertices in the clique. 
Suppose that 𝑝1  and 𝑝2  are the least prime numbers in 𝜋(𝑛)  and 
𝜋(𝑚), respectively. Consider the vertices (𝑥1𝑘 , 𝑥2𝑧), where 1 ≤ 𝑘 <
𝑝1  and 1 ≤ 𝑧 < 𝑝2 . The vertex (𝑥1𝑘 , 𝑥2𝑧)  is not adjacent to 
(𝑥1

𝑝𝑓 , 𝑥2
𝑝𝑙) since 𝑘 + 𝑝1 < 𝑛 and 𝑘 + 𝑝2 < 𝑚. Moreover, (𝑥1𝑘 , 𝑥2𝑧) 

is not adjacent to (𝑥1
𝑠1𝑓
∗

, 𝑥2
𝑠2𝑙
∗

) since 𝑘 + 𝑠1𝑓
∗ < 𝑛 and 𝑘 + 𝑠2𝑙

∗ < 𝑚. 
Therefore, the clique number is 𝜋∗(𝑛) + 𝑆1∗  when 𝑚 < 𝑛 , and by 
using a similar argument, we can show that 𝜋∗(𝑚) + 𝑆2∗ is the clique 
number.  
Using the knowledge of relatively prime numbers to study the 
structure of tensor product graphs of the variation monogenic 
semigroup, as well as observing Theorem 2.7 and Theorem 2.8, since  

𝒳(𝛤(𝑉𝑆𝑀𝑛
1 ) ⊗ 𝛤(𝑉𝑆𝑀𝑚

2 )) = 𝜔(𝛤(𝑉𝑆𝑀𝑛
1 ) ⊗ 𝛤(𝑉𝑆𝑀𝑚

2 ))

= {

𝜋∗(𝑛) + 𝑆1
∗,  𝑖𝑓 𝑛 ≤ 𝑚

 
𝜋∗(𝑚) + 𝑆2

∗,  𝑖𝑓 𝑚 < 𝑛
 

we discover that the graph Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚
2 )  preserves the 

perfectness property, as stated in the next lemma. 

2.9. Lemma: The graph 𝛤(𝑉𝑆𝑀𝑛
1 ) ⊗ 𝛤(𝑉𝑆𝑀𝑚

2 ) is a perfect graph.  

The tensor product graph of the monogenic semigroup Γ(𝑆𝑀𝑛1 ) ⊗

Γ(𝑆𝑀𝑚
2 )  of Akgunes et al. (2014) proved that 𝒳(𝛤(𝑆𝑀𝑛1 ) ⊗

𝛤(𝑆𝑀𝑚
2 )) = 𝑀𝑖𝑛 (𝒳(𝛤(𝑆𝑀

1 )),𝒳(𝛤(𝑆𝑀
2 ))) . This result is also 

true for the tensor product graph of the variation monogenic 
semigroup, which can be deduced from Theorem 2.7. So, 
𝒳(Γ(𝑉𝑆𝑀𝑛

1 ) ⊗ Γ(𝑉𝑆𝑀𝑚
2 )) = 𝑀𝑖𝑛(𝒳(Γ(𝑉𝑆𝑀

1 )),𝒳(Γ(𝑉𝑆𝑀
2 ))). 

From Akgunes et al. (2014), the domination number of the tensor 
product of the graph of the monogenic semigroup is 3. However, the 
domination number of the tensor product of the variation monogenic 
semigroup graph cannot possibly be 3 , as shown below and from 
Theorem 2.11 in Al Subaiei and Akwu (2020). 
2.10. Theorem: For any variation monogenic semigroup graphs 
𝛤(𝑉𝑆𝑀𝑛

1 ) and 𝛤(𝑉𝑆𝑀𝑚
2 ), the domination number of 𝛤(𝑉𝑆𝑀𝑛1 ) ⊗

𝛤(𝑉𝑆𝑀𝑚
2 ) is given as: 
𝛾(Γ(𝑉𝑆𝑀𝑛

1 ) ⊗ Γ(𝑉𝑆𝑀𝑚
2 ))

= {
2𝛾(Γ(𝑉𝑆𝑀𝑛

1 ))𝛾(Γ(𝑉𝑆𝑀𝑚
2 )),  𝑛 𝑜𝑟 𝑚 𝑝𝑟𝑖𝑚𝑒 

𝛾(Γ(𝑉𝑆𝑀𝑛
1 ))𝛾(Γ(𝑉𝑆𝑀𝑚

2 )),  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Proof. According to Al Subaiei and Akwu (2020), the domination 
number of any graph Γ(𝑉𝑆𝑀𝑛) is as follows: 
• If 𝑛 is prime, then from 𝛾(Γ(𝑉𝑆𝑀𝑛)) = 1 say 𝑥𝑛.  
•  If 𝑛  is not prime and 𝑛 − 𝑝  does not contain a prime number 𝑡  such that 

𝑔𝑐𝑑(𝑛, 𝑡) ≠ 1, where 𝑝 is the highest prime number less or equal to 𝑛. Then, 
we need one more vertex, say 𝑥𝑝 , such that 𝛾(Γ(𝑉𝑆𝑀𝑛)) = 2 =
|{𝑥𝑛 , 𝑥𝑝}|.  

• If 𝑛 − 𝑝 contains a prime number 𝑡 such that 𝑔𝑐𝑑(𝑛, 𝑡) ≠ 1 and 𝑝 + 𝑡 <
𝑛, then we need the additional vertex 𝑥𝑟 , 𝑝 < 𝑟 < 𝑛 such that 𝑟 + 𝑡 > 𝑛 
and 𝑔𝑐𝑑(𝑟, 𝑡) = 1. Therefore, 𝛾(Γ(𝑉𝑆𝑀𝑛)) = 3 = |{𝑥𝑛, 𝑥𝑟, 𝑥𝑝}|.  

•  If 𝑛 − 𝑝  contains 𝑡  and 𝑞  where 𝑡  is a prime number and 𝑞 ≡ 0 (𝑚𝑜𝑑 𝑡) 
such that 𝑔𝑐𝑑(𝑛, 𝑡) ≠ 1 , 𝑝 + 𝑡 < 𝑛  and 𝑝 + 𝑞 < 𝑛 . Also, for 𝑟 , where 
𝑝 < 𝑟 < 𝑛 , 𝑔𝑐𝑑(𝑟, 𝑡) = 1 , and 𝑟 + 𝑡 > 𝑛  but 𝑔𝑐𝑑(𝑟, 𝑞) ≠ 1 . Also, 
since 𝑔𝑐𝑑(𝑛, 𝑡) ≠ 1, we have 𝑔𝑐𝑑(𝑞, 𝑛) ≠ 1. Therefore, we need vertex 
𝑥𝑠 , 𝑝 < 𝑠 < 𝑛  such that 𝑠 + 𝑞 > 𝑛  and 𝑔𝑐𝑑(𝑠, 𝑞) = 1 . Then, 
𝛾(Γ(𝑉𝑆𝑀𝑛)) = 4 = |{𝑥

𝑛, 𝑥𝑟, 𝑥𝑠, 𝑥𝑝}|.  

Now, from the above, let 𝛾(Γ(𝑉𝑆𝑀𝑛1 )) = 𝑘 and 𝛾(Γ(𝑉𝑆𝑀𝑚
2 )) = 𝑙. 

Next, we split the problem into the following two cases: 
 Case 1: When 𝑛 and 𝑚 are both prime or when 𝑛 or 𝑚 is prime. 
If 𝑛 is prime and 𝑚 is not or 𝑛 and 𝑚 are both prime, let 𝐷 represent 
the domination number and construct (𝑘 + 1) × 𝑙  Latin square, 
where 𝑘 + 1 = {𝑥𝑛, 𝑥𝑛−1} . Also, if 𝑚  is prime and 𝑛  is not, 
construct 𝑘 × (𝑙 + 1)  Latin square, where 𝑙 + 1 = {𝑥𝑚, 𝑥𝑚−1} . 
Then, the Latin square (𝑘 + 1) × 𝑙  or 𝑘 × (𝑙 + 1)  gives 
2𝛾(Γ(𝑉𝑆𝑀𝑛

1 ))𝛾(Γ(𝑉𝑆𝑀𝑚
2 )) . All vertices of Γ(𝑉𝑆𝑀𝑛

1 ) ⊗
Γ(𝑉𝑆𝑀𝑚

2 )\2𝛾(Γ(𝑉𝑆𝑀𝑛
1 ))𝛾(Γ(𝑉𝑆𝑀𝑚

2 )) are adjacent to at least one 
vertex in 2𝛾(Γ(𝑉𝑆𝑀𝑛1 ))𝛾(Γ(𝑉𝑆𝑀𝑚

2 )) . Therefore, we have 𝐷 =
2𝛾(Γ(𝑉𝑆𝑀𝑛

1 ))𝛾(Γ(𝑉𝑆𝑀𝑚
2 )), which is the desired result. 

 Case 2: When both 𝑛 and 𝑚 are not prime. 
Construct Latin square 𝑘 × 𝑙 where 𝑘 takes care of 𝑛 number of rows 
and 𝑙  takes care of 𝑚  number of columns. Hence, the Latin square 
𝑘 × 𝑙  gives 𝛾(𝛤(𝑉𝑆𝑀𝑛1 ))𝛾(𝛤(𝑉𝑆𝑀𝑚

2 )),  which is the domination 
number of Γ(𝑉𝑆𝑀𝑛1 ) ⊗ Γ(𝑉𝑆𝑀𝑚

2 )  whenever 𝑛 and 𝑚  are not 
prime, since all vertices in Γ(𝑉𝑆𝑀𝑛

1 ) ⊗ Γ(𝑉𝑆𝑀𝑚
2 )\

𝛾(Γ(𝑉𝑆𝑀𝑛
1 ))𝛾(Γ(𝑉𝑆𝑀𝑚

2 ))  are adjacent to at least one vertex in 
𝛾(Γ(𝑉𝑆𝑀𝑛

1 ))𝛾(Γ(𝑉𝑆𝑀𝑚
2 )).  

2.11. Example: Consider the graph 𝛤(𝑉𝑆𝑀10) ⊗ 𝛤(𝑉𝑆𝑀9) . Then, 
𝒳(𝛤(𝑉𝑆𝑀10) ⊗ 𝛤(𝑉𝑆𝑀9)) = 4 , 𝛾(𝛤(𝑉𝑆𝑀10) ⊗ 𝛤(𝑉𝑆𝑀9)) =
6 , and 𝜔(𝛤(𝑉𝑆𝑀10) ⊗ 𝛤(𝑉𝑆𝑀9)) = 4 . While the graph 
𝛤(𝑉𝑆𝑀8) ⊗ 𝛤(𝑉𝑆𝑀6)  has 𝒳(𝛤(𝑉𝑆𝑀8) ⊗ 𝛤(𝑉𝑆𝑀6)) = 3 , 
𝛾(𝛤(𝑉𝑆𝑀8) ⊗ 𝛤(𝑉𝑆𝑀6)) = 4, and 𝜔(𝛤(𝑉𝑆𝑀8) ⊗ 𝛤(𝑉𝑆𝑀6)) =
3. 
Lastly, we draw our conclusion with the following remark. 

2.12. Remark: The tensor product graph 𝜞(𝑽𝑺𝑴𝒏
𝟏 ) ⊗ 𝜞(𝑽𝑺𝑴𝒎

𝟐 ) 
can be viewed as a coprime graph. By Equation (∗) and definition of 

𝜞(𝑽𝑺𝑴𝒏
𝟏 ) ⊗ 𝜞(𝑽𝑺𝑴𝒎

𝟐 ) , we have that any pair of vertices in 
𝜞(𝑽𝑺𝑴𝒏

𝟏 ) ⊗ 𝜞(𝑽𝑺𝑴𝒎
𝟐 ) are adjacent if and only if their labels are 

relatively prime. 

 

Biographies 

Abolape Deborah Akwu 
Department of Mathematics, College of Science, Federal University of 
Agriculture, Makurdi, Nigeria, abolaopeyemi@yahoo.co.uk, 
002348055960217 

Dr Akwu recieved her PhD and Master’s degree from the University 
of Ibadan, Ibadan, Nigeria in Graph Theory and Abstract Algebra, 
respectively. She has conducted research on graph theory and 
algebra-related topics, such as the decomposition of equipartite 
graphs into edge-disjoint sunlet graphs, outer connected vertex-edge 
domination number of graphs, decomposition of tensor product 
graphs into cycle of even length, Neutrosophic groups and 
Neutrosophic rings. Also, she published articles in journal indexes in 
Scopus, ISI and MathScinet. ORCID ID: 0000-0002-4665-5040 

Bana Al Subaiei 
Department of Mathematics and Statistics, College of Science, King Faisal 
University, Al Ahsa, Saudi Arabia, banajawid@kfu.edu.sa, 
00966500816416 

Dr Al Subaiei is a Saudi assistant professor in the Mathematics and 
Statistics Department and has been Vice Dean of Preparatory Year 
Deanship from 2017 until present. She got her PhD and Master’s 
degrees from the University of Southampton, Southampton, United 
Kingdom. She has published papers in ISI and Scopus journals. She 
joined many committees at the department level, college level and 
university level, such as the main committee of scientific chairs and 
the committee of development and quality assurance at the College 
of Science. ORCID ID: 0000-0001-6279-4959 

References 
Akgunes, N., Das, K. C. and Sinan Cevik, A. (2014). Some properties on the 

tensor product of graphs obtained by monogenic semigroups. 
Applied Mathematics and Computation, 235, 352–7. 

Al Subaiei, B. and Akwu, A. D. (2020). The zero-divisor graph of variation 
monogenic semigroups. Sci. J. King Faisal Univ., 21(2), 189–93. 
DOI: 10.37575/b/sci/0016 

Anderson, D. F. and Badawi, A. (2017). ‘The zero-divisor graph of a 
commutative semigroup: A survey’. In: M. Droste, L. Fuchs, B. 
Goldsmith and L. Strüngmann. (eds.) Groups, Modules, and Model 
Theory - Surveys and Recent Developments, 23–39. Cham: 
Springer. DOI: 10.1007/978-3-319-51718-6_2  

Asmerom, G. A. (1998). Imbeddings of the tensor product of graphs where 
the second factor is a complete graph. Discrete Mathematics, 
182(n/a), 13–9. 

Bondy, J. A. and Murty, U. S. (1976). Graph Theory with Applications. New 
York: Elsevier Science Publishing Co., Inc. 

Das, K. C., Akgunes, N. and Sinan Cevik, A. (2013). On a graph of monogenic 
semigroups. Journal of Inequalities and Applications, 2013(1), 1–13. 

DeMeyer, F. R. and DeMeyer, L. (2005). The zero-divisor graphs of 
semigroups. J. Algebra, 283(1), 190–8. 

DeMeyer, F. R., McKenzie, T. and Schneider, K. (2002). The zero-divisor 
graph of a commutative semigroups. Semigroup Forum, 65(2), 
206–14. 

Harary, F. and Trauth, Jr., C. A. (1966). Connectedness of products of two 
directed graphs. SIAM Journal on Applied Mathematics, 14(2), 
250–4. 

Lovasz, L. (1972). Normal hypergraphs and the weak perfect graph 
conjecture. Discrete Math, 2(3), 253–67. 

Sampathkumar, E. (1972). On tensor product graphs. Journal of the 
Australian Mathematical Society, 20(3), 268–73. 

Wright, S. E. (2007). Lengths of paths and cycles in zero-divisor graphs and 
digraphs of semigroups. Commun. Algebra, 35(6), 1987–91.  

mailto:banajawid@kfu.edu.sa

